skip to main content


Search for: All records

Creators/Authors contains: "Crone-Odekon, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present an HI-optical catalog of ~ 30,000 galaxies based on the 100% complete Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey combined with data from the Sloan Digital Sky Survey (SDSS). Our goal is to facilitate public use of the completed ALFALFA catalog by providing carefully determined matches to SDSS counterparts, including matches for ~ 10,000 galaxies that do not have SDSS spectra. These identifications can provide a basis for further cross-matching with other surveys using SDSS photometric IDs as a reference point. We derive absolute magnitudes and stellar masses for each galaxy using optical colors combined with an internal reddening correction designed for small- and intermediate-mass galaxies with active star formation. We also provide measures of stellar masses and star formation rates based on infrared and/or ultraviolet photometry for galaxies that are detected by the Wide-field Infrared Survey Explorer (WISE) and/or the Galaxy Evolution Explorer (GALEX). Finally, we compare the galaxy population in the ALFALFA-SDSS sample with the populations in several other publicly-available galaxy catalogs, and confirm that ALFALFA galaxies typically have lower masses and bluer colors. 
    more » « less
  2. null (Ed.)
    We present a method for estimating the amount of matter in large-scale (approximately 50 Mpc) filaments using the surrounding velocity infall pattern, based on 242 filaments in the Millennium simulation. We identify filaments using a minimal spanning tree to link large groups and clusters, and find the axis of each filament using a weighted principle component analysis. We improve our previous determination of a typical infall velocity profile by rescaling the profile for each filament by the distance where the infall speed reaches a maximum. We use the resulting average profile to determine a two-parameter piecewise function that can be used to estimate the maximum infall speed and location for individual filaments. Finally, we present the correlation between the maximum infall speed and the mass of the filament. These results will be used as part of the Arecibo Pisces-Perseus Supercluster Survey (APPSS), a project to map the infall pattern around the Pisces-Perseus Supercluster filament. This work is supported by NSF grant AST-1637339. 
    more » « less
  3. The Arecibo Pisces-Perseus Supercluster Survey (APPSS) will map out infall to the Pisces-Perseus Supercluster filament using redshift-independent distances from the Baryonic Tully-Fisher Relation (BTFR). Here we examine the properties of outliers to the BTFR, with an emphasis on low mass galaxies. Our goal is partly to determine which galaxies should be excluded from our analysis in order to use the BTFR to obtain accurate distances, and partly to understand the dynamical properties of this population of galaxies. This work has been supported by NSF grant AST-1637339. 
    more » « less
  4. In preparation for comparison with the Arecibo Pisces-Perseus Supercluster Survey (APPSS), we present the theoretically expected density and velocity profiles for large-scale (~ 50 Mpc) filaments from the Millennium simulation. We use an observationally-friendly method to identify filaments using the positions of large groups of galaxies, and average filaments together to find the typical structure of a filament in terms of cylindrical density profile and velocity infall profile. Both profiles can be fit by simple functions, but show a large scatter across the population of filaments. We are in the process of categorizing filaments to facilitate comparison with observations of specific filaments, like the Pisces-Perseus Supercluster filament. This work has been supported by NSF grant AST-1637339. 
    more » « less